DOORS: Dataset fOr bOuldeRs Segmentation. Statistical properties and Blender setup

التفاصيل البيبلوغرافية
العنوان: DOORS: Dataset fOr bOuldeRs Segmentation. Statistical properties and Blender setup
المؤلفون: Pugliatti, Mattia, Topputo, Francesco
سنة النشر: 2022
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Computer Vision and Pattern Recognition, Computer Science - Artificial Intelligence, Computer Science - Databases, Computer Science - Machine Learning
الوصف: The capability to detect boulders on the surface of small bodies is beneficial for vision-based applications such as hazard detection during critical operations and navigation. This task is challenging due to the wide assortment of irregular shapes, the characteristics of the boulders population, and the rapid variability in the illumination conditions. Moreover, the lack of publicly available labeled datasets for these applications damps the research about data-driven algorithms. In this work, the authors provide a statistical characterization and setup used for the generation of two datasets about boulders on small bodies that are made publicly available.
Comment: 16 pages, 19 figures, summary paper of a dataset
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2210.16253
رقم الانضمام: edsarx.2210.16253
قاعدة البيانات: arXiv