A distribution testing oracle separation between QMA and QCMA

التفاصيل البيبلوغرافية
العنوان: A distribution testing oracle separation between QMA and QCMA
المؤلفون: Natarajan, Anand, Nirkhe, Chinmay
المصدر: Quantum 8, 1377 (2024)
سنة النشر: 2022
المجموعة: Quantum Physics
مصطلحات موضوعية: Quantum Physics
الوصف: It is a long-standing open question in quantum complexity theory whether the definition of $\textit{non-deterministic}$ quantum computation requires quantum witnesses $(\textsf{QMA})$ or if classical witnesses suffice $(\textsf{QCMA})$. We make progress on this question by constructing a randomized classical oracle separating the respective computational complexity classes. Previous separations [Aaronson-Kuperberg (CCC'07), Fefferman-Kimmel (MFCS'18)] required a quantum unitary oracle. The separating problem is deciding whether a distribution supported on regular un-directed graphs either consists of multiple connected components (yes instances) or consists of one expanding connected component (no instances) where the graph is given in an adjacency-list format by the oracle. Therefore, the oracle is a distribution over $n$-bit boolean functions.
Comment: 45 pages; corrected acceptance date
نوع الوثيقة: Working Paper
DOI: 10.22331/q-2024-06-17-1377
URL الوصول: http://arxiv.org/abs/2210.15380
رقم الانضمام: edsarx.2210.15380
قاعدة البيانات: arXiv
الوصف
DOI:10.22331/q-2024-06-17-1377