Every diffeomorphism is a total renormalization of a close to identity map

التفاصيل البيبلوغرافية
العنوان: Every diffeomorphism is a total renormalization of a close to identity map
المؤلفون: Berger, Pierre, Gourmelon, Nicolaz, Helfter, Mathieu
سنة النشر: 2022
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Dynamical Systems
الوصف: For any $1\le r\le \infty$, we show that every diffeomorphism of a manifold of the form $\mathbb{R}/\mathbb{Z} \times M$ is a total renormalization of a $C^r$-close to identity map. In other words, for every diffeomorphism $f$ of $\mathbb{R}/\mathbb{Z} \times M$, there exists a map $g$ arbitrarily close to identity such that the first return map of $g$ to a domain is conjugate to $f$ and moreover the orbit of this domain is equal to $\mathbb{R}/\mathbb{Z} \times M$. This enables us to localize nearby the identity the existence of many properties in dynamical systems, such as being Bernoulli for a smooth volume form.
Comment: To appear in Inventiones mathematicae. 29 pages, 8 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2210.09064
رقم الانضمام: edsarx.2210.09064
قاعدة البيانات: arXiv