Report
Benign Autoencoders
العنوان: | Benign Autoencoders |
---|---|
المؤلفون: | Malamud, Semyon, Xu, Teng Andrea, Didisheim, Antoine |
سنة النشر: | 2022 |
المجموعة: | Computer Science |
مصطلحات موضوعية: | Computer Science - Machine Learning, Computer Science - Artificial Intelligence |
الوصف: | Recent progress in Generative Artificial Intelligence (AI) relies on efficient data representations, often featuring encoder-decoder architectures. We formalize the mathematical problem of finding the optimal encoder-decoder pair and characterize its solution, which we name the "benign autoencoder" (BAE). We prove that BAE projects data onto a manifold whose dimension is the optimal compressibility dimension of the generative problem. We highlight surprising connections between BAE and several recent developments in AI, such as conditional GANs, context encoders, stable diffusion, stacked autoencoders, and the learning capabilities of generative models. As an illustration, we show how BAE can find optimal, low-dimensional latent representations that improve the performance of a discriminator under a distribution shift. By compressing "malignant" data dimensions, BAE leads to smoother and more stable gradients. Comment: This paper replaces and subsumes arXiv:2110.08884 |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2210.00637 |
رقم الانضمام: | edsarx.2210.00637 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |