Maximal degree subposets of $\nu$-Tamari lattices

التفاصيل البيبلوغرافية
العنوان: Maximal degree subposets of $\nu$-Tamari lattices
المؤلفون: Dermenjian, Aram
سنة النشر: 2022
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Combinatorics, 05E, 05A19, 06A07
الوصف: In this paper, we study two different subposets of the $\nu$-Tamari lattice: one in which all elements have maximal in-degree and one in which all elements have maximal out-degree.The maximal in-degree and maximal out-degree of a $\nu$-Dyck path turns out to be the size of the maximal staircase shape path that fits weakly above $\nu$.For $m$-Dyck paths of height $n$, we further show that the maximal out-degree poset is poset isomorphic to the $\nu$-Tamari lattice of $(m-1)$-Dyck paths of height $n$, and the maximal in-degree poset is poset isomorphic to the $(m-1)$-Dyck paths of height $n$ together with a greedy order.We show these two isomorphisms and give some properties on $\nu$-Tamari lattices along the way.
Comment: 34 pages, 3 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2208.11417
رقم الانضمام: edsarx.2208.11417
قاعدة البيانات: arXiv