Geodesic complexity via fibered decompositions of cut loci

التفاصيل البيبلوغرافية
العنوان: Geodesic complexity via fibered decompositions of cut loci
المؤلفون: Mescher, Stephan, Stegemeyer, Maximilian
سنة النشر: 2022
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Geometric Topology, Mathematics - Algebraic Topology, Mathematics - Differential Geometry, 55M30, 53C22
الوصف: The geodesic complexity of a Riemannian manifold is a numerical isometry invariant that is determined by the structure of its cut loci. In this article we study decompositions of cut loci over whose components the tangent cut loci fiber in a convenient way. We establish a new upper bound for geodesic complexity in terms of such decompositions. As an application, we obtain estimates for the geodesic complexity of certain classes of homogeneous manifolds. In particular, we compute the geodesic complexity of complex and quaternionic projective spaces with their standard symmetric metrics.
Comment: 22 pages, revised version, to appear in Journal of Applied and Computational Topology
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2206.07691
رقم الانضمام: edsarx.2206.07691
قاعدة البيانات: arXiv