The derivative formula of $p$-adic $L$-functions for imaginary quadratic fields at trivial zeros

التفاصيل البيبلوغرافية
العنوان: The derivative formula of $p$-adic $L$-functions for imaginary quadratic fields at trivial zeros
المؤلفون: Chida, Masataka, Hsieh, Ming-Lun
سنة النشر: 2022
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory
الوصف: The rank one Gross conjecture for Deligne-Ribet $p$-adic $L$-functions was solved in works of Darmon-Dasgupta-Pollack and Ventullo by the Eisenstein congruence among Hilbert modular forms. The purpose of this paper is to prove an analogue of the Gross conjecture for the Katz $p$-adic $L$-functions attached to imaginary quadratic fields via the congruences between CM forms and non-CM forms. The new ingredient is to apply the $p$-adic Rankin-Selberg method to construct a non-CM Hida family which is congruent to a Hida family of CM forms at the $1+\varepsilon$ specialization.
Comment: Final version. The reference numbers differ from the journal version. To appear in Annales Mathematiques du Quebec (Special birthday issue for Bernadette Perrin-Riou)
نوع الوثيقة: Working Paper
DOI: 10.1007/s40316-022-00198-6
URL الوصول: http://arxiv.org/abs/2205.14711
رقم الانضمام: edsarx.2205.14711
قاعدة البيانات: arXiv
الوصف
DOI:10.1007/s40316-022-00198-6