Extinction of multiple shocks in the modular Burgers equation

التفاصيل البيبلوغرافية
العنوان: Extinction of multiple shocks in the modular Burgers equation
المؤلفون: Pelinovsky, Dmitry E., de Rijk, Bjorn
سنة النشر: 2022
المجموعة: Mathematics
Nonlinear Sciences
مصطلحات موضوعية: Mathematics - Analysis of PDEs, Mathematics - Dynamical Systems, Nonlinear Sciences - Pattern Formation and Solitons
الوصف: We consider multiple shock waves in the Burgers' equation with a modular advection term. It was previously shown that the modular Burgers' equation admits a traveling viscous shock with a single interface, which is stable against smooth and exponentially localized perturbations. In contrast, we suggest in the present work with the help of energy estimates and numerical simulations that the evolution of shock waves with multiple interfaces leads to finite-time coalescence of two consecutive interfaces. We formulate a precise scaling law of the finite-time extinction supported by the interface equations and by numerical simulations.
Comment: 12 pages; 4 figures
نوع الوثيقة: Working Paper
DOI: 10.1007/s11071-022-07873-x
URL الوصول: http://arxiv.org/abs/2205.06467
رقم الانضمام: edsarx.2205.06467
قاعدة البيانات: arXiv
الوصف
DOI:10.1007/s11071-022-07873-x