Genetic Improvement in the Shackleton Framework for Optimizing LLVM Pass Sequences

التفاصيل البيبلوغرافية
العنوان: Genetic Improvement in the Shackleton Framework for Optimizing LLVM Pass Sequences
المؤلفون: Li, Shuyue Stella, Peeler, Hannah, Sloss, Andrew N., Reid, Kenneth N., Banzhaf, Wolfgang
سنة النشر: 2022
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Neural and Evolutionary Computing, Computer Science - Artificial Intelligence
الوصف: Genetic improvement is a search technique that aims to improve a given acceptable solution to a problem. In this paper, we present the novel use of genetic improvement to find problem-specific optimized LLVM pass sequences. We develop a pass-level patch representation in the linear genetic programming framework, Shackleton, to evolve the modifications to be applied to the default optimization pass sequences. Our GI-evolved solution has a mean of 3.7% runtime improvement compared to the -O3 optimization level in the default code generation options which optimizes on runtime. The proposed GI method provides an automatic way to find a problem-specific optimization sequence that improves upon a general solution without any expert domain knowledge. In this paper, we discuss the advantages and limitations of the GI feature in the Shackleton Framework and present our results.
Comment: 3 pages, 2 figures
نوع الوثيقة: Working Paper
DOI: 10.1145/3520304.3534000
URL الوصول: http://arxiv.org/abs/2204.13261
رقم الانضمام: edsarx.2204.13261
قاعدة البيانات: arXiv