التفاصيل البيبلوغرافية
العنوان: |
Optimal Geodesic Curvature Constrained Dubins' Paths on a Sphere |
المؤلفون: |
Darbha, Swaroop, Pavan, Athindra, Rajagopal, K. R., Rathinam, Sivakumar, Casbeer, David W., Manyam, Satyanarayana G. |
سنة النشر: |
2022 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Optimization and Control |
الوصف: |
In this article, we consider the motion planning of a rigid object on the unit sphere with a unit speed. The motion of the object is constrained by the maximum absolute value, $U_{max}$ of geodesic curvature of its path; this constrains the object to change the heading at the fastest rate only when traveling on a tight smaller circular arc of radius $r <1$, where $r$ depends on the bound, $U_{max}$. We show in this article that if $0 \frac{1}{2}$, while paths of the above type may cease to exist depending on the boundary conditions and the value of $r$, optimal paths may be concatenations of more than three circular arcs. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/2203.16426 |
رقم الانضمام: |
edsarx.2203.16426 |
قاعدة البيانات: |
arXiv |