Report
On the derivation of the homogeneous kinetic wave equation for a nonlinear random matrix model
العنوان: | On the derivation of the homogeneous kinetic wave equation for a nonlinear random matrix model |
---|---|
المؤلفون: | Dubach, Guillaume, Germain, Pierre, Harrop-Griffiths, Benjamin |
المصدر: | Ars Inveniendi Analytica (2023), Paper No. 7, 63 pp |
سنة النشر: | 2022 |
المجموعة: | Mathematics Mathematical Physics |
مصطلحات موضوعية: | Mathematics - Analysis of PDEs, Mathematical Physics, Mathematics - Probability |
الوصف: | We consider a nonlinear system of ODEs, where the underlying linear dynamics are determined by a Hermitian random matrix ensemble. We prove that the leading order dynamics in the weakly nonlinear, infinite volume limit are determined by a solution to the corresponding kinetic wave equation on a non-trivial timescale. Our proof relies on estimates for Haar-distributed unitary matrices obtained from Weingarten calculus, which may be of independent interest. Comment: 63 pages, 15 figures |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2203.13748 |
رقم الانضمام: | edsarx.2203.13748 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |