On the derivation of the homogeneous kinetic wave equation for a nonlinear random matrix model

التفاصيل البيبلوغرافية
العنوان: On the derivation of the homogeneous kinetic wave equation for a nonlinear random matrix model
المؤلفون: Dubach, Guillaume, Germain, Pierre, Harrop-Griffiths, Benjamin
المصدر: Ars Inveniendi Analytica (2023), Paper No. 7, 63 pp
سنة النشر: 2022
المجموعة: Mathematics
Mathematical Physics
مصطلحات موضوعية: Mathematics - Analysis of PDEs, Mathematical Physics, Mathematics - Probability
الوصف: We consider a nonlinear system of ODEs, where the underlying linear dynamics are determined by a Hermitian random matrix ensemble. We prove that the leading order dynamics in the weakly nonlinear, infinite volume limit are determined by a solution to the corresponding kinetic wave equation on a non-trivial timescale. Our proof relies on estimates for Haar-distributed unitary matrices obtained from Weingarten calculus, which may be of independent interest.
Comment: 63 pages, 15 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2203.13748
رقم الانضمام: edsarx.2203.13748
قاعدة البيانات: arXiv