Spectral stability of small-amplitude dispersive shocks in quantum hydrodynamics with viscosity

التفاصيل البيبلوغرافية
العنوان: Spectral stability of small-amplitude dispersive shocks in quantum hydrodynamics with viscosity
المؤلفون: Folino, Raffaele, Plaza, Ramón G., Zhelyazov, Delyan
المصدر: Commun. Pure Appl. Anal., 21 (2022), 4019-4040
سنة النشر: 2022
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Analysis of PDEs, 76Y05, 35Q35, 35B35, 35P15
الوصف: A compressible viscous-dispersive Euler system in one space dimension in the context of quantum hydrodynamics is considered. The dispersive term is due to quantum effects described through the Bohm potential and the viscosity term is of linear type. It is shown that small-amplitude viscous-dispersive shock profiles for the system under consideration are spectrally stable, proving in this fashion a previous numerical observation by Lattanzio et al. (Phys. D 402, 2020, p. 132222; Appl. Math. Comput. 385, 2020, p. 125450). The proof is based on spectral energy estimates which profit from the monotonicty of the profiles in the small-amplitude regime.
Comment: 23 pages, 1 figure
نوع الوثيقة: Working Paper
DOI: 10.3934/cpaa.2022133
URL الوصول: http://arxiv.org/abs/2203.04475
رقم الانضمام: edsarx.2203.04475
قاعدة البيانات: arXiv