On the spectral instability for weak intermediate triharmonic problems

التفاصيل البيبلوغرافية
العنوان: On the spectral instability for weak intermediate triharmonic problems
المؤلفون: Ferraresso, Francesco
سنة النشر: 2022
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Analysis of PDEs, Mathematics - Spectral Theory, 35J30 35J58 35P99
الوصف: We define the weak intermediate boundary conditions for the triharmonic operator $- \Delta^3$. We analyse the sensitivity of this type of boundary conditions upon domain perturbations. We construct a perturbation $(\Omega_\epsilon)_{\epsilon > 0}$ of a smooth domain $\Omega$ of $\mathbb{R}^N$ for which the weak intermediate boundary conditions on $\partial \Omega_\epsilon$ are not preserved in the limit on $\partial \Omega$, analogously to the Babu\v{s}ka paradox for the hinged plate. Four different boundary conditions can be produced in the limit, depending on the convergence of $\partial \Omega_\epsilon$ to $\partial \Omega$. In one particular case, we obtain a ``strange'' boundary condition featuring a microscopic energy term related to the shape of the approaching domains. Many aspects of our analysis could be generalised to an arbitrary order elliptic differential operator of order $2m$ and to more general domain perturbations.
Comment: accepted for publication in 'Mathematical Methods in the Applied Sciences'
نوع الوثيقة: Working Paper
DOI: 10.1002/mma.8144
URL الوصول: http://arxiv.org/abs/2201.07636
رقم الانضمام: edsarx.2201.07636
قاعدة البيانات: arXiv