Parabolic induction for Springer fibres

التفاصيل البيبلوغرافية
العنوان: Parabolic induction for Springer fibres
المؤلفون: Topley, Lewis, Saunders, Neil
سنة النشر: 2021
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Algebraic Geometry, Mathematics - Combinatorics
الوصف: Let $G$ be a reductive group satisfying the standard hypotheses, with Lie algebra $\mathfrak{g}$. For each nilpotent orbit $\mathcal{O}_0$ in a Levi subalgebra $\mathfrak{g}_0$ we can consider the induced orbit $\mathcal{O}$ defined by Lusztig and Spaltenstein. We observe that there is a natural closed morphism of relative dimension zero from the Springer fibre over a point of $\mathcal{O}_0$ to the Springer fibre over $\mathcal{O}$, which induces an injection on the level of irreducible components. When $G = \operatorname{GL}_N$ the components of Springer fibres was classified by Spaltenstein using standard tableaux. Our main results explains how the Lusztig--Spaltenstein map of Springer fibres can be described combinatorially, using a new associative composition rule for standard tableaux which we call stacking.
Comment: 15 pages, comments welcome
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2112.09923
رقم الانضمام: edsarx.2112.09923
قاعدة البيانات: arXiv