Report
Rational points on symmetric squares of constant algebraic curves over function fields
العنوان: | Rational points on symmetric squares of constant algebraic curves over function fields |
---|---|
المؤلفون: | Berg, Jennifer, Voloch, José Felipe |
سنة النشر: | 2021 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Number Theory, Mathematics - Algebraic Geometry |
الوصف: | We consider smooth projective curves C/$\mathbb{F}$ over a finite field and their symmetric squares $C^{(2)}$. For a global function field $K/\mathbb{F}$, we study the $K$-rational points of $C^{(2)}$. We describe the adelic points of $C^{(2)}$ surviving Frobenius descent and how the $K$-rational points fit there. Our methods also lead to an explicit bound on the number of $K$-rational points of $C^{(2)}$ satisfying an additional condition. Some of our results apply to arbitrary constant subvarieties of abelian varieties, however we produce examples which show that not all of our stronger conclusions extend. Comment: 10 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2111.14967 |
رقم الانضمام: | edsarx.2111.14967 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |