Rational points on symmetric squares of constant algebraic curves over function fields

التفاصيل البيبلوغرافية
العنوان: Rational points on symmetric squares of constant algebraic curves over function fields
المؤلفون: Berg, Jennifer, Voloch, José Felipe
سنة النشر: 2021
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory, Mathematics - Algebraic Geometry
الوصف: We consider smooth projective curves C/$\mathbb{F}$ over a finite field and their symmetric squares $C^{(2)}$. For a global function field $K/\mathbb{F}$, we study the $K$-rational points of $C^{(2)}$. We describe the adelic points of $C^{(2)}$ surviving Frobenius descent and how the $K$-rational points fit there. Our methods also lead to an explicit bound on the number of $K$-rational points of $C^{(2)}$ satisfying an additional condition. Some of our results apply to arbitrary constant subvarieties of abelian varieties, however we produce examples which show that not all of our stronger conclusions extend.
Comment: 10 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2111.14967
رقم الانضمام: edsarx.2111.14967
قاعدة البيانات: arXiv