Upper Bounds for Positive Semidefinite Propagation Time

التفاصيل البيبلوغرافية
العنوان: Upper Bounds for Positive Semidefinite Propagation Time
المؤلفون: Hogben, Leslie, Hunnell, Mark, Liu, Kevin, Schuerger, Houston, Small, Ben, Zhang, Yaqi
سنة النشر: 2021
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Combinatorics
الوصف: The tight upper bound $\operatorname{pt}_+(G) \leq \left\lceil \frac{\left\vert \operatorname{V}(G) \right\vert - \operatorname{Z}_+(G)}{2} \right\rceil$ is established for the positive semidefinite propagation time of a graph in terms of its positive semidefinite zero forcing number. To prove this bound, two methods of transforming one positive semidefinite zero forcing set into another and algorithms implementing these methods are presented. Consequences of the bound, including a tight Nordhaus-Gaddum sum upper bound on positive semidefinite propagation time, are established.
Comment: 14 pages, 7 figures
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2111.12240
رقم الانضمام: edsarx.2111.12240
قاعدة البيانات: arXiv