Report
Multiple recurrence and convergence without commutativity
العنوان: | Multiple recurrence and convergence without commutativity |
---|---|
المؤلفون: | Frantzikinakis, Nikos, Host, Bernard |
سنة النشر: | 2021 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Dynamical Systems, Primary: 37A30, Secondary: 37A45, 28D05 |
الوصف: | We establish multiple recurrence and convergence results for pairs of zero entropy measure preserving transformations that do not satisfy any commutativity assumptions. Our results cover the case where the iterates of the two transformations are $n$ and $n^k$ respectively, where $k\geq 2$, and the case $k=1$ remains an open problem. Our starting point is based on the observation that Furstenberg systems of sequences of the form $(f(T^{n^k}x))$ have very special structural properties when $k\geq 2$. We use these properties and some disjointness arguments in order to get characteristic factors with nilpotent structure for the corresponding ergodic averages, and then finish the proof using some equidistribution results on nilmanifolds. Comment: 20 pages. Referee's comments incorporated.To appear in the Journal of the London Mathematical Society |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2111.01518 |
رقم الانضمام: | edsarx.2111.01518 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |