Generalized manifolds, normal invariants, and $\mathbb{L}$-homology

التفاصيل البيبلوغرافية
العنوان: Generalized manifolds, normal invariants, and $\mathbb{L}$-homology
المؤلفون: Hegenbarth, Friedrich, Repovš, Dušan D.
المصدر: Proc. Edinb. Math. Soc. (2) 64:3 (2021), 574-589
سنة النشر: 2021
مصطلحات موضوعية: Mathematics - Algebraic Topology, Mathematics - Geometric Topology, Primary: 55N07, 55R20, 57P10, 57R67, Secondary: 18F15, 55M05, 55N20, 57P05, 57P99, 57R65
الوصف: Let $X^{n}$ be an arbitrary oriented closed generalized $n$-manifold, $n\ge 5$. In our recent paper (Proc. Edinb. Math. Soc. (2) 63 (2020), no. 2, 597-607) we have constructed a map $t:\mathcal{N}(X^{n}) \to H^{st}_{n} ( X^{n}; \mathbb{L}^+)$ which extends the normal invariant map for the case when $X^{n}$ is a topological $n$-manifold. Here, $\mathcal{N}(X^{n})$ denotes the set of all normal bordism classes of degree one normal maps $(f,b): M^{n} \to X^{n},$ and $H^{st}_{*} ( X^{n}; \mathbb{E})$ denotes the Steenrod homology of the spectrum $\mathbb{E}$. An important nontrivial question arose whether the map $t$ is bijective (note that this holds in the case that $X^{n}$ is a topological $n$-manifold). It is the purpose of this paper to prove that the answer to this question is affirmative.
نوع الوثيقة: Working Paper
DOI: 10.1017/S0013091521000316
URL الوصول: http://arxiv.org/abs/2110.12742
رقم الانضمام: edsarx.2110.12742
قاعدة البيانات: arXiv
الوصف
DOI:10.1017/S0013091521000316