Local newforms for the general linear groups over a non-archimedean local field

التفاصيل البيبلوغرافية
العنوان: Local newforms for the general linear groups over a non-archimedean local field
المؤلفون: Atobe, Hiraku, Kondo, Satoshi, Yasuda, Seidai
سنة النشر: 2021
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory, Mathematics - Representation Theory
الوصف: In [12], Jacquet--Piatetskii-Shapiro--Shalika defined a family of compact open subgroups of $p$-adic general linear groups indexed by non-negative integers, and established the theory of local newforms for irreducible generic representations. In this paper, we extend their results to all irreducible representations. To do this, we define a new family of compact open subgroups indexed by certain tuples of non-negative integers. For the proof, we introduce the Rankin--Selberg integrals for Speh representations.
Comment: 60 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2110.09070
رقم الانضمام: edsarx.2110.09070
قاعدة البيانات: arXiv