Report
Local newforms for the general linear groups over a non-archimedean local field
العنوان: | Local newforms for the general linear groups over a non-archimedean local field |
---|---|
المؤلفون: | Atobe, Hiraku, Kondo, Satoshi, Yasuda, Seidai |
سنة النشر: | 2021 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Number Theory, Mathematics - Representation Theory |
الوصف: | In [12], Jacquet--Piatetskii-Shapiro--Shalika defined a family of compact open subgroups of $p$-adic general linear groups indexed by non-negative integers, and established the theory of local newforms for irreducible generic representations. In this paper, we extend their results to all irreducible representations. To do this, we define a new family of compact open subgroups indexed by certain tuples of non-negative integers. For the proof, we introduce the Rankin--Selberg integrals for Speh representations. Comment: 60 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2110.09070 |
رقم الانضمام: | edsarx.2110.09070 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |