Hodge theory on ALG$^*$ manifolds

التفاصيل البيبلوغرافية
العنوان: Hodge theory on ALG$^*$ manifolds
المؤلفون: Chen, Gao, Viaclovsky, Jeff, Zhang, Ruobing
سنة النشر: 2021
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Differential Geometry
الوصف: We develop a Fredholm Theory for the Hodge Laplacian in weighted spaces on ALG$^*$ manifolds in dimension four. We then give several applications of this theory. First, we show the existence of harmonic functions with prescribed asymptotics at infinity. A corollary of this is a non-existence result for ALG$^*$ manifolds with non-negative Ricci curvature having group $\Gamma = \{e\}$ at infinity. Next, we prove a Hodge decomposition for the first de Rham cohomology group of an ALG$^*$ manifold. A corollary of this is vanishing of the first betti number for any ALG$^*$ manifold with non-negative Ricci curvature. Another application of our analysis is to determine the optimal order of ALG$^*$ gravitational instantons.
Comment: 35 pages; final version; to appear in J. Reine Angew. Math. (Crelle's Journal)
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2109.08782
رقم الانضمام: edsarx.2109.08782
قاعدة البيانات: arXiv