Elucidating proximity magnetism through polarized neutron reflectometry and machine learning

التفاصيل البيبلوغرافية
العنوان: Elucidating proximity magnetism through polarized neutron reflectometry and machine learning
المؤلفون: Andrejevic, Nina, Chen, Zhantao, Nguyen, Thanh, Fan, Leon, Heiberger, Henry, Zhou, Ling-Jie, Zhao, Yi-Fan, Chang, Cui-Zu, Grutter, Alexander, Li, Mingda
سنة النشر: 2021
المجموعة: Condensed Matter
مصطلحات موضوعية: Condensed Matter - Materials Science
الوصف: Polarized neutron reflectometry is a powerful technique to interrogate the structures of multilayered magnetic materials with depth sensitivity and nanometer resolution. However, reflectometry profiles often inhabit a complicated objective function landscape using traditional fitting methods, posing a significant challenge to parameter retrieval. In this work, we develop a data-driven framework to recover the sample parameters from polarized neutron reflectometry data with minimal user intervention. We train a variational autoencoder to map reflectometry profiles with moderate experimental noise to an interpretable, low-dimensional space from which sample parameters can be extracted with high resolution. We apply our method to recover the scattering length density profiles of the topological insulator-ferromagnetic insulator heterostructure Bi$_2$Se$_3$/EuS exhibiting proximity magnetism, in good agreement with the results of conventional fitting. We further analyze a more challenging reflectometry profile of the topological insulator-antiferromagnet heterostructure (Bi,Sb)$_2$Te$_3$/Cr$_2$O$_3$ and identify possible interfacial proximity magnetism in this material. We anticipate the framework developed here can be applied to resolve hidden interfacial phenomena in a broad range of layered systems.
نوع الوثيقة: Working Paper
DOI: 10.1063/5.0078814
URL الوصول: http://arxiv.org/abs/2109.08005
رقم الانضمام: edsarx.2109.08005
قاعدة البيانات: arXiv