التفاصيل البيبلوغرافية
العنوان: |
Elucidating proximity magnetism through polarized neutron reflectometry and machine learning |
المؤلفون: |
Andrejevic, Nina, Chen, Zhantao, Nguyen, Thanh, Fan, Leon, Heiberger, Henry, Zhou, Ling-Jie, Zhao, Yi-Fan, Chang, Cui-Zu, Grutter, Alexander, Li, Mingda |
سنة النشر: |
2021 |
المجموعة: |
Condensed Matter |
مصطلحات موضوعية: |
Condensed Matter - Materials Science |
الوصف: |
Polarized neutron reflectometry is a powerful technique to interrogate the structures of multilayered magnetic materials with depth sensitivity and nanometer resolution. However, reflectometry profiles often inhabit a complicated objective function landscape using traditional fitting methods, posing a significant challenge to parameter retrieval. In this work, we develop a data-driven framework to recover the sample parameters from polarized neutron reflectometry data with minimal user intervention. We train a variational autoencoder to map reflectometry profiles with moderate experimental noise to an interpretable, low-dimensional space from which sample parameters can be extracted with high resolution. We apply our method to recover the scattering length density profiles of the topological insulator-ferromagnetic insulator heterostructure Bi$_2$Se$_3$/EuS exhibiting proximity magnetism, in good agreement with the results of conventional fitting. We further analyze a more challenging reflectometry profile of the topological insulator-antiferromagnet heterostructure (Bi,Sb)$_2$Te$_3$/Cr$_2$O$_3$ and identify possible interfacial proximity magnetism in this material. We anticipate the framework developed here can be applied to resolve hidden interfacial phenomena in a broad range of layered systems. |
نوع الوثيقة: |
Working Paper |
DOI: |
10.1063/5.0078814 |
URL الوصول: |
http://arxiv.org/abs/2109.08005 |
رقم الانضمام: |
edsarx.2109.08005 |
قاعدة البيانات: |
arXiv |