Report
Perturbing eigenvalues of nonnegative centrosymmetric matrices
العنوان: | Perturbing eigenvalues of nonnegative centrosymmetric matrices |
---|---|
المؤلفون: | Díaz, Roberto C., Julio, Ana I., Linares, Yankis R. |
سنة النشر: | 2021 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Combinatorics |
الوصف: | An $n\times n$ matrix $C$ is said to be {\it centrosymmetric} if it satisfies the relation $JCJ=C$, where $J$ is the $n\times n$ counteridentity matrix. Centrosymmetric matrices have a rich eigenstructure that has been studied extensively in the literature. Many results for centrosymmetric matrices have been generalized to wider classes of matrices that arise in a wide variety of disciplines. In this paper, we obtain interesting spectral properties for nonnegative centrosymmetric matrices. We show how to change one single eigenvalue, two or three eigenvalues of an $n\times n$ nonnegative centrosymmetric matrix without changing any of the remaining eigenvalues neither nonnegativity nor the centrosymmetric structure. Moreover, our results allow partially answer some known questions given by Guo [11] and by Guo and Guo [12]. Our proofs generate algorithmic procedures that allow to compute a solution matrix. Comment: 23 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2109.01563 |
رقم الانضمام: | edsarx.2109.01563 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |