Scalable Analysis for Covid-19 and Vaccine Data

التفاصيل البيبلوغرافية
العنوان: Scalable Analysis for Covid-19 and Vaccine Data
المؤلفون: Collins, Chris, Cuevas, Roxana, Hernandez, Edward, Hernandez, Reece, Le, Breanna, Woo, Jongwook
سنة النشر: 2021
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Distributed, Parallel, and Cluster Computing
الوصف: This paper explains the scalable methods used for extracting and analyzing the Covid-19 vaccine data. Using Big Data such as Hadoop and Hive, we collect and analyze the massive data set of the confirmed, the fatality, and the vaccination data set of Covid-19. The data size is about 3.2 Giga-Byte. We show that it is possible to store and process massive data with Big Data. The paper proceeds tempo-spatial analysis, and visual maps, charts, and pie charts visualize the result of the investigation. We illustrate that the more vaccinated, the fewer the confirmed cases.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2108.02898
رقم الانضمام: edsarx.2108.02898
قاعدة البيانات: arXiv