Approximating Sumset Size

التفاصيل البيبلوغرافية
العنوان: Approximating Sumset Size
المؤلفون: De, Anindya, Nadimpalli, Shivam, Servedio, Rocco A.
سنة النشر: 2021
المجموعة: Computer Science
Mathematics
مصطلحات موضوعية: Computer Science - Data Structures and Algorithms, Computer Science - Discrete Mathematics, Mathematics - Combinatorics
الوصف: Given a subset $A$ of the $n$-dimensional Boolean hypercube $\mathbb{F}_2^n$, the sumset $A+A$ is the set $\{a+a': a, a' \in A\}$ where addition is in $\mathbb{F}_2^n$. Sumsets play an important role in additive combinatorics, where they feature in many central results of the field. The main result of this paper is a sublinear-time algorithm for the problem of sumset size estimation. In more detail, our algorithm is given oracle access to (the indicator function of) an arbitrary $A \subseteq \mathbb{F}_2^n$ and an accuracy parameter $\epsilon > 0$, and with high probability it outputs a value $0 \leq v \leq 1$ that is $\pm \epsilon$-close to $\mathrm{Vol}(A' + A')$ for some perturbation $A' \subseteq A$ of $A$ satisfying $\mathrm{Vol}(A \setminus A') \leq \epsilon.$ It is easy to see that without the relaxation of dealing with $A'$ rather than $A$, any algorithm for estimating $\mathrm{Vol}(A+A)$ to any nontrivial accuracy must make $2^{\Omega(n)}$ queries. In contrast, we give an algorithm whose query complexity depends only on $\epsilon$ and is completely independent of the ambient dimension $n$.
Comment: 23 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2107.12367
رقم الانضمام: edsarx.2107.12367
قاعدة البيانات: arXiv