Implicit Rate-Constrained Optimization of Non-decomposable Objectives

التفاصيل البيبلوغرافية
العنوان: Implicit Rate-Constrained Optimization of Non-decomposable Objectives
المؤلفون: Kumar, Abhishek, Narasimhan, Harikrishna, Cotter, Andrew
سنة النشر: 2021
المجموعة: Computer Science
Statistics
مصطلحات موضوعية: Computer Science - Machine Learning, Statistics - Machine Learning
الوصف: We consider a popular family of constrained optimization problems arising in machine learning that involve optimizing a non-decomposable evaluation metric with a certain thresholded form, while constraining another metric of interest. Examples of such problems include optimizing the false negative rate at a fixed false positive rate, optimizing precision at a fixed recall, optimizing the area under the precision-recall or ROC curves, etc. Our key idea is to formulate a rate-constrained optimization that expresses the threshold parameter as a function of the model parameters via the Implicit Function theorem. We show how the resulting optimization problem can be solved using standard gradient based methods. Experiments on benchmark datasets demonstrate the effectiveness of our proposed method over existing state-of-the art approaches for these problems. The code for the proposed method is available at https://github.com/google-research/google-research/tree/master/implicit_constrained_optimization .
Comment: ICML 2021; Code available at https://github.com/google-research/google-research/tree/master/implicit_constrained_optimization
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2107.10960
رقم الانضمام: edsarx.2107.10960
قاعدة البيانات: arXiv