Redescription Model Mining

التفاصيل البيبلوغرافية
العنوان: Redescription Model Mining
المؤلفون: Stamm, Felix I., Becker, Martin, Strohmaier, Markus, Lemmerich, Florian
سنة النشر: 2021
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Databases, Computer Science - Machine Learning
الوصف: This paper introduces Redescription Model Mining, a novel approach to identify interpretable patterns across two datasets that share only a subset of attributes and have no common instances. In particular, Redescription Model Mining aims to find pairs of describable data subsets -- one for each dataset -- that induce similar exceptional models with respect to a prespecified model class. To achieve this, we combine two previously separate research areas: Exceptional Model Mining and Redescription Mining. For this new problem setting, we develop interestingness measures to select promising patterns, propose efficient algorithms, and demonstrate their potential on synthetic and real-world data. Uncovered patterns can hint at common underlying phenomena that manifest themselves across datasets, enabling the discovery of possible associations between (combinations of) attributes that do not appear in the same dataset.
نوع الوثيقة: Working Paper
DOI: 10.1145/3447548.3467366
URL الوصول: http://arxiv.org/abs/2107.04462
رقم الانضمام: edsarx.2107.04462
قاعدة البيانات: arXiv