Report
Heat kernel asymptotics for quaternionic contact manifolds
العنوان: | Heat kernel asymptotics for quaternionic contact manifolds |
---|---|
المؤلفون: | Laaroussi, Abdellah |
سنة النشر: | 2021 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Differential Geometry, Mathematics - Analysis of PDEs, 53C17, 58J50, 41A60, 35K08 |
الوصف: | In this paper, we study the heat kernel associated to the intrinsic sublaplacian on a quaternionic contact manifold considered as a subriemannian manifold. More precisely, we explicitly compute the first two coefficients $c_0$ and $c_1$ appearing in the small time asymptotics expansion of the heat kernel on the diagonal. We show that the second coefficient $c_1$ depends linearly on the qc scalar curvature $\kappa$. Finally we apply our results to compact qc-Einstein manifolds and prove the spectral invariance of geometric quantities in the subriemannian setting. Comment: arXiv admin note: text overlap with arXiv:2102.04784 |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2103.00892 |
رقم الانضمام: | edsarx.2103.00892 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |