Heat kernel asymptotics for quaternionic contact manifolds

التفاصيل البيبلوغرافية
العنوان: Heat kernel asymptotics for quaternionic contact manifolds
المؤلفون: Laaroussi, Abdellah
سنة النشر: 2021
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Differential Geometry, Mathematics - Analysis of PDEs, 53C17, 58J50, 41A60, 35K08
الوصف: In this paper, we study the heat kernel associated to the intrinsic sublaplacian on a quaternionic contact manifold considered as a subriemannian manifold. More precisely, we explicitly compute the first two coefficients $c_0$ and $c_1$ appearing in the small time asymptotics expansion of the heat kernel on the diagonal. We show that the second coefficient $c_1$ depends linearly on the qc scalar curvature $\kappa$. Finally we apply our results to compact qc-Einstein manifolds and prove the spectral invariance of geometric quantities in the subriemannian setting.
Comment: arXiv admin note: text overlap with arXiv:2102.04784
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2103.00892
رقم الانضمام: edsarx.2103.00892
قاعدة البيانات: arXiv