Dual process in the two-parameter Poisson-Dirichlet diffusion

التفاصيل البيبلوغرافية
العنوان: Dual process in the two-parameter Poisson-Dirichlet diffusion
المؤلفون: Griffiths, Robert C., Ruggiero, Matteo, Spanò, Dario, Zhou, Youzhou
المصدر: Stochastic processes and their applications 179, 104500, 2024
سنة النشر: 2021
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Probability, 60J25, 60J35, 60J60, 60G09, 60G55
الوصف: The two-parameter Poisson-Dirichlet diffusion takes values in the infinite ordered simplex and extends the celebrated infinitely-many-neutral-alleles model, having a two-parameter Poisson-Dirichlet stationary distribution. Here we identify a dual process for this diffusion and obtain its transition probabilities. The dual is shown to be given by Kingman's coalescent with mutation, conditional on a given configuration of leaves. Interestingly, the dual depends on the additional parameter of the stationary distribution only through the test functions and not through the transition rates. After discussing the sampling probabilities of a two-parameter Poisson-Dirichlet partition drawn conditionally on another partition, we use these notions together with the dual process to derive the transition density of the diffusion. Our derivation provides a new probabilistic proof of this result, leveraging on an extension of Pitman's Polya urn scheme, whereby the urn is split after a finite number of steps and two urns are run independently onwards. The proof strategy exemplifies the power of duality and could be exported to other models where a dual is available.
Comment: Final version, to appear on Stochastic Processes and their Applications
نوع الوثيقة: Working Paper
DOI: 10.1016/j.spa.2024.104500
URL الوصول: http://arxiv.org/abs/2102.08520
رقم الانضمام: edsarx.2102.08520
قاعدة البيانات: arXiv
الوصف
DOI:10.1016/j.spa.2024.104500