Report
Pluripotential theory for tropical toric varieties and non-archimedean Monge-Amp\'ere equations
العنوان: | Pluripotential theory for tropical toric varieties and non-archimedean Monge-Amp\'ere equations |
---|---|
المؤلفون: | Gil, José Ignacio Burgos, Gubler, Walter, Jell, Philipp, Künnemann, Klaus |
سنة النشر: | 2021 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Algebraic Geometry, Mathematics - Number Theory, Primary 32P05, Secondary 32U05, 14T90, 32W20 |
الوصف: | Tropical toric varieties are partial compactifications of finite dimensional real vector spaces associated with rational polyhedral fans. We introduce plurisubharmonic functions and a Bedford--Taylor product for Lagerberg currents on open subsets of a tropical toric variety. The resulting tropical toric pluripotential theory provides the link to give a canonical correspondence between complex and non-archimedean pluripotential theories of invariant plurisubharmonic functions on toric varieties. We will apply this correspondence to solve invariant non-archimedean Monge--Amp\`ere equations on toric and abelian varieties over arbitrary non-archimedean fields. Comment: 65 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2102.07392 |
رقم الانضمام: | edsarx.2102.07392 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |