Pluripotential theory for tropical toric varieties and non-archimedean Monge-Amp\'ere equations

التفاصيل البيبلوغرافية
العنوان: Pluripotential theory for tropical toric varieties and non-archimedean Monge-Amp\'ere equations
المؤلفون: Gil, José Ignacio Burgos, Gubler, Walter, Jell, Philipp, Künnemann, Klaus
سنة النشر: 2021
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Algebraic Geometry, Mathematics - Number Theory, Primary 32P05, Secondary 32U05, 14T90, 32W20
الوصف: Tropical toric varieties are partial compactifications of finite dimensional real vector spaces associated with rational polyhedral fans. We introduce plurisubharmonic functions and a Bedford--Taylor product for Lagerberg currents on open subsets of a tropical toric variety. The resulting tropical toric pluripotential theory provides the link to give a canonical correspondence between complex and non-archimedean pluripotential theories of invariant plurisubharmonic functions on toric varieties. We will apply this correspondence to solve invariant non-archimedean Monge--Amp\`ere equations on toric and abelian varieties over arbitrary non-archimedean fields.
Comment: 65 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2102.07392
رقم الانضمام: edsarx.2102.07392
قاعدة البيانات: arXiv