Report
Hyers-Ulam stability of the first order difference equation generated by linear maps
العنوان: | Hyers-Ulam stability of the first order difference equation generated by linear maps |
---|---|
المؤلفون: | Nam, Young Woo |
سنة النشر: | 2021 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Dynamical Systems, Primary 39A20, Secondary 39A45 |
الوصف: | Hyers-Ulam stability of the difference equation $ z_{n+1} = a_nz_n + b_n $ is investigated. If $ \prod_{j=1}^{n}|a_j| $ has subexponential growth rate, then difference equation generated by linear maps has no Hyers-Ulam stability. Other complementary results are also found where $ \lim_{n \rightarrow \infty} \left(\prod_{j=1}^{n}|a_j| \right)^{\frac{1}{n}} $ is greater or less than one. These results contain Hyers-Ulam stability of the first order linear difference equation with periodic coefficients also. Comment: 36 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2101.02364 |
رقم الانضمام: | edsarx.2101.02364 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |