التفاصيل البيبلوغرافية
العنوان: |
$L^{p}$-estimates for the Hessians of solutions to fully nonlinear parabolic equations with oblique boundary conditions |
المؤلفون: |
Byun, Sun-Sig, Han, Jeongmin |
سنة النشر: |
2020 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - Analysis of PDEs, Primary: 35K55, Secondary: 35K10, 35K20 |
الوصف: |
We study fully nonlinear parabolic equations in nondivergence form with oblique boundary conditions. An optimal and global Calder\'{o}n-Zygmund estimate is obtained by proving that the Hessian of the viscosity solution to the oblique boundary problem is as integrable as the nonhomogeneous term in $L^{p}$ spaces under minimal regularity requirement on the nonlinear operator, the boundary data and the boundary of the domain. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/2012.07435 |
رقم الانضمام: |
edsarx.2012.07435 |
قاعدة البيانات: |
arXiv |