$L^{p}$-estimates for the Hessians of solutions to fully nonlinear parabolic equations with oblique boundary conditions

التفاصيل البيبلوغرافية
العنوان: $L^{p}$-estimates for the Hessians of solutions to fully nonlinear parabolic equations with oblique boundary conditions
المؤلفون: Byun, Sun-Sig, Han, Jeongmin
سنة النشر: 2020
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Analysis of PDEs, Primary: 35K55, Secondary: 35K10, 35K20
الوصف: We study fully nonlinear parabolic equations in nondivergence form with oblique boundary conditions. An optimal and global Calder\'{o}n-Zygmund estimate is obtained by proving that the Hessian of the viscosity solution to the oblique boundary problem is as integrable as the nonhomogeneous term in $L^{p}$ spaces under minimal regularity requirement on the nonlinear operator, the boundary data and the boundary of the domain.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2012.07435
رقم الانضمام: edsarx.2012.07435
قاعدة البيانات: arXiv