The fundamental inequality for cocompact Fuchsian groups

التفاصيل البيبلوغرافية
العنوان: The fundamental inequality for cocompact Fuchsian groups
المؤلفون: Kosenko, Petr, Tiozzo, Giulio
سنة النشر: 2020
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Dynamical Systems, Mathematics - Geometric Topology, Mathematics - Probability, 60G50, 20F67 (Primary) 30F35, 60J50 (Secondary)
الوصف: We prove that the hitting measure is singular with respect to Lebesgue measure for any random walk on a cocompact Fuchsian group generated by translations joining opposite sides of a symmetric hyperbolic polygon. Moreover, the Hausdorff dimension of the hitting measure is strictly less than 1. A similar statement is proven for Coxeter groups. Along the way, we prove for cocompact Fuchsian groups a purely geometric inequality for geodesic lengths, strongly reminiscent of the Anderson-Canary-Culler-Shalen inequality for free Kleinian groups.
Comment: 20 pages, 5 figures. Main result (Theorem 1) strengthened; results on Coxeter groups (Theorem 2) and Hausdorff dimension (Corollary 3) added. Introduction expanded
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2012.07417
رقم الانضمام: edsarx.2012.07417
قاعدة البيانات: arXiv