Improved Guarantees for k-means++ and k-means++ Parallel

التفاصيل البيبلوغرافية
العنوان: Improved Guarantees for k-means++ and k-means++ Parallel
المؤلفون: Makarychev, Konstantin, Reddy, Aravind, Shan, Liren
المصدر: NeurIPS 2020
سنة النشر: 2020
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Machine Learning, Computer Science - Data Structures and Algorithms
الوصف: In this paper, we study k-means++ and k-means++ parallel, the two most popular algorithms for the classic k-means clustering problem. We provide novel analyses and show improved approximation and bi-criteria approximation guarantees for k-means++ and k-means++ parallel. Our results give a better theoretical justification for why these algorithms perform extremely well in practice. We also propose a new variant of k-means++ parallel algorithm (Exponential Race k-means++) that has the same approximation guarantees as k-means++.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2010.14487
رقم الانضمام: edsarx.2010.14487
قاعدة البيانات: arXiv