Relationships among quasivarieties induced by the min networks on inverse semigroups

التفاصيل البيبلوغرافية
العنوان: Relationships among quasivarieties induced by the min networks on inverse semigroups
المؤلفون: Feng, Ying-Ying, Wang, Li-Min, Zhou, Zhi-Yong
سنة النشر: 2020
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Group Theory, 20M18
الوصف: A congruence on an inverse semigroup $S$ is determined uniquely by its kernel and trace. Denoting by $\rho_k$ and $\rho_t$ the least congruence on $S$ having the same kernel and the same trace as $\rho$, respectively, and denoting by $\omega$ the universal congruence on $S$, we consider the sequence $\omega$, $\omega_k$, $\omega_t$, $(\omega_k)_t$, $(\omega_t)_k$, $((\omega_k)_t)_k$, $((\omega_t)_k)_t$, $\cdots$. The quotients $\{S/\omega_k\}$, $\{S/\omega_t\}$, $\{S/(\omega_k)_t\}$, $\{S/(\omega_t)_k\}$, $\{S/((\omega_k)_t)_k\}$, $\{S/((\omega_t)_k)_t\}$, $\cdots$, as $S$ runs over all inverse semigroups, form quasivarieties. This article explores the relationships among these quasivarieties.
نوع الوثيقة: Working Paper
DOI: 10.1007/s00233-020-10126-1
URL الوصول: http://arxiv.org/abs/2008.10539
رقم الانضمام: edsarx.2008.10539
قاعدة البيانات: arXiv
الوصف
DOI:10.1007/s00233-020-10126-1