On locally analytic vectors of the completed cohomology of modular curves

التفاصيل البيبلوغرافية
العنوان: On locally analytic vectors of the completed cohomology of modular curves
المؤلفون: Pan, Lue
سنة النشر: 2020
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory, Mathematics - Algebraic Geometry, Mathematics - Representation Theory, 11F77 (Primary) 11F22, 11F33, 14G22 (Secondary)
الوصف: We study the locally analytic vectors in the completed cohomology of modular curves and determine the eigenvectors of a rational Borel subalgebra of $\mathfrak{gl}_2(\mathbb{Q}_p)$. As applications, we prove a classicality result for overconvergent eigenforms of weight one and give a new proof of the Fontaine-Mazur conjecture in the irregular case under some mild hypotheses. For an overconvergent eigenform of weight $k$, we show its corresponding Galois representation has Hodge-Tate-Sen weights $0,k-1$ and prove a converse result.
Comment: 88 pages; v3: revised version. We incorporate the recent result of Paskunas-Tung (arXiv:2104.08948)
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2008.07099
رقم الانضمام: edsarx.2008.07099
قاعدة البيانات: arXiv