On a problem of partitions of $\mathbb{Z}_{m}$ with the same representation functions

التفاصيل البيبلوغرافية
العنوان: On a problem of partitions of $\mathbb{Z}_{m}$ with the same representation functions
المؤلفون: Sun, Cui-Fang, Xiong, Meng-Chi
سنة النشر: 2020
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Number Theory
الوصف: For any positive integer $m$, let $\mathbb{Z}_{m}$ be the set of residue classes modulo $m$. For $A\subseteq \mathbb{Z}_{m}$ and $\overline{n}\in \mathbb{Z}_{m}$, let representation function $R_{A}(\overline{n})$ denote the number of solutions of the equation $\overline{n}=\overline{a}+\overline{a'}$ with ordered pairs $(\overline{a}, \overline{a'})\in A \times A$. In this paper, we determine all sets $A, B\subseteq \mathbb{Z}_{m}$ with $A\cup B=\mathbb{Z}_{m}$ and $|A\cap B|=2$ or $m-2$ such that $R_{A}(\overline{n})=R_{B}(\overline{n})$ for all $\overline{n}\in \mathbb{Z}_{m}$. We also prove that if $m$ is a positive integer with $4|m$, then there exist two distinct sets $A, B\subseteq \mathbb{Z}_{m}$ with $A\cup B=\mathbb{Z}_{m}$ and $|A\cap B|=4$ or $m-4$, $B\neq A+\overline{\frac{m}{2}}$ such that $R_{A}(\overline{n})=R_{B}(\overline{n})$ for all $\overline{n}\in \mathbb{Z}_{m}$. If $m$ is a positive integer with $2\|m$, $A\cup B=\mathbb{Z}_{m}$ and $|A\cap B|=4$ or $m-4$, then $R_{A}(\overline{n})=R_{B}(\overline{n})$ for all $\overline{n}\in \mathbb{Z}_{m}$ if and only if $B=A+\overline{\frac{m}{2}}$.
Comment: 8 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2006.16513
رقم الانضمام: edsarx.2006.16513
قاعدة البيانات: arXiv