Report
On a problem of partitions of $\mathbb{Z}_{m}$ with the same representation functions
العنوان: | On a problem of partitions of $\mathbb{Z}_{m}$ with the same representation functions |
---|---|
المؤلفون: | Sun, Cui-Fang, Xiong, Meng-Chi |
سنة النشر: | 2020 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Number Theory |
الوصف: | For any positive integer $m$, let $\mathbb{Z}_{m}$ be the set of residue classes modulo $m$. For $A\subseteq \mathbb{Z}_{m}$ and $\overline{n}\in \mathbb{Z}_{m}$, let representation function $R_{A}(\overline{n})$ denote the number of solutions of the equation $\overline{n}=\overline{a}+\overline{a'}$ with ordered pairs $(\overline{a}, \overline{a'})\in A \times A$. In this paper, we determine all sets $A, B\subseteq \mathbb{Z}_{m}$ with $A\cup B=\mathbb{Z}_{m}$ and $|A\cap B|=2$ or $m-2$ such that $R_{A}(\overline{n})=R_{B}(\overline{n})$ for all $\overline{n}\in \mathbb{Z}_{m}$. We also prove that if $m$ is a positive integer with $4|m$, then there exist two distinct sets $A, B\subseteq \mathbb{Z}_{m}$ with $A\cup B=\mathbb{Z}_{m}$ and $|A\cap B|=4$ or $m-4$, $B\neq A+\overline{\frac{m}{2}}$ such that $R_{A}(\overline{n})=R_{B}(\overline{n})$ for all $\overline{n}\in \mathbb{Z}_{m}$. If $m$ is a positive integer with $2\|m$, $A\cup B=\mathbb{Z}_{m}$ and $|A\cap B|=4$ or $m-4$, then $R_{A}(\overline{n})=R_{B}(\overline{n})$ for all $\overline{n}\in \mathbb{Z}_{m}$ if and only if $B=A+\overline{\frac{m}{2}}$. Comment: 8 pages |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/2006.16513 |
رقم الانضمام: | edsarx.2006.16513 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |