Thermodynamic formalism for random non-uniformly expanding maps

التفاصيل البيبلوغرافية
العنوان: Thermodynamic formalism for random non-uniformly expanding maps
المؤلفون: Stadlbauer, Manuel, Suzuki, Shintaro, Varandas, Paulo
المصدر: Commun. Math. Phys. 385, 369-427 (2021)
سنة النشر: 2020
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Dynamical Systems
الوصف: We develop a quenched thermodynamic formalism for a wide class of random maps with non-uniform expansion, where no Markov structure, no uniformly bounded degree or the existence of some expanding dynamics is required. We prove that every measurable and fibered $C^1$-potential at high temperature admits a unique equilibrium state which satisfies a weak Gibbs property, and has exponential decay of correlations. The arguments combine a functional analytic approach for the decay of correlations (using Birkhoff cone methods) and Carath\'eodory-type structures to describe the relative pressure of not necessary compact invariant sets in random dynamical systems. We establish also a variational principle for the relative pressure of random dynamical systems.
Comment: 58 pages, revised version
نوع الوثيقة: Working Paper
DOI: 10.1007/s00220-021-04088-w
URL الوصول: http://arxiv.org/abs/2006.03749
رقم الانضمام: edsarx.2006.03749
قاعدة البيانات: arXiv
الوصف
DOI:10.1007/s00220-021-04088-w