Report
Thermodynamic formalism for random non-uniformly expanding maps
العنوان: | Thermodynamic formalism for random non-uniformly expanding maps |
---|---|
المؤلفون: | Stadlbauer, Manuel, Suzuki, Shintaro, Varandas, Paulo |
المصدر: | Commun. Math. Phys. 385, 369-427 (2021) |
سنة النشر: | 2020 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Dynamical Systems |
الوصف: | We develop a quenched thermodynamic formalism for a wide class of random maps with non-uniform expansion, where no Markov structure, no uniformly bounded degree or the existence of some expanding dynamics is required. We prove that every measurable and fibered $C^1$-potential at high temperature admits a unique equilibrium state which satisfies a weak Gibbs property, and has exponential decay of correlations. The arguments combine a functional analytic approach for the decay of correlations (using Birkhoff cone methods) and Carath\'eodory-type structures to describe the relative pressure of not necessary compact invariant sets in random dynamical systems. We establish also a variational principle for the relative pressure of random dynamical systems. Comment: 58 pages, revised version |
نوع الوثيقة: | Working Paper |
DOI: | 10.1007/s00220-021-04088-w |
URL الوصول: | http://arxiv.org/abs/2006.03749 |
رقم الانضمام: | edsarx.2006.03749 |
قاعدة البيانات: | arXiv |
DOI: | 10.1007/s00220-021-04088-w |
---|