Report
Necessary condition for the $L^2$ boundedness of the Riesz transform on Heisenberg groups
العنوان: | Necessary condition for the $L^2$ boundedness of the Riesz transform on Heisenberg groups |
---|---|
المؤلفون: | Dąbrowski, Damian, Villa, Michele |
سنة النشر: | 2020 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Classical Analysis and ODEs, Mathematics - Metric Geometry, 42B20 (Primary) 43A80, 28A75, 35R03 (Secondary) |
الوصف: | Let $\mu$ be a Radon measure on the $n$-th Heisenberg group $\mathbb{H}^n$. In this note we prove that if the $(2n+1)$-dimensional (Heisenberg) Riesz transform on $\mathbb{H}^n$ is $L^2(\mu)$-bounded, and if $\mu(F)=0$ for all Borel sets with $\dim_H(F)\leq 2$, then $\mu$ must have $(2n+1)$-polynomial growth. This is the Heisenberg counterpart of a result of Guy David from 1991. Comment: 14 pages |
نوع الوثيقة: | Working Paper |
DOI: | 10.1017/S0305004123000245 |
URL الوصول: | http://arxiv.org/abs/2004.01117 |
رقم الانضمام: | edsarx.2004.01117 |
قاعدة البيانات: | arXiv |
DOI: | 10.1017/S0305004123000245 |
---|