Necessary condition for the $L^2$ boundedness of the Riesz transform on Heisenberg groups

التفاصيل البيبلوغرافية
العنوان: Necessary condition for the $L^2$ boundedness of the Riesz transform on Heisenberg groups
المؤلفون: Dąbrowski, Damian, Villa, Michele
سنة النشر: 2020
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Classical Analysis and ODEs, Mathematics - Metric Geometry, 42B20 (Primary) 43A80, 28A75, 35R03 (Secondary)
الوصف: Let $\mu$ be a Radon measure on the $n$-th Heisenberg group $\mathbb{H}^n$. In this note we prove that if the $(2n+1)$-dimensional (Heisenberg) Riesz transform on $\mathbb{H}^n$ is $L^2(\mu)$-bounded, and if $\mu(F)=0$ for all Borel sets with $\dim_H(F)\leq 2$, then $\mu$ must have $(2n+1)$-polynomial growth. This is the Heisenberg counterpart of a result of Guy David from 1991.
Comment: 14 pages
نوع الوثيقة: Working Paper
DOI: 10.1017/S0305004123000245
URL الوصول: http://arxiv.org/abs/2004.01117
رقم الانضمام: edsarx.2004.01117
قاعدة البيانات: arXiv
الوصف
DOI:10.1017/S0305004123000245