Transfer between long-term and short-term memory using Conceptors

التفاصيل البيبلوغرافية
العنوان: Transfer between long-term and short-term memory using Conceptors
المؤلفون: Strock, Anthony, Rougier, Nicolas, Hinaut, Xavier
سنة النشر: 2020
المجموعة: Computer Science
Nonlinear Sciences
Quantitative Biology
Statistics
مصطلحات موضوعية: Computer Science - Neural and Evolutionary Computing, Computer Science - Machine Learning, Nonlinear Sciences - Adaptation and Self-Organizing Systems, Quantitative Biology - Neurons and Cognition, Statistics - Machine Learning
الوصف: We introduce a recurrent neural network model of working memory combining short-term and long-term components. e short-term component is modelled using a gated reservoir model that is trained to hold a value from an input stream when a gate signal is on. e long-term component is modelled using conceptors in order to store inner temporal patterns (that corresponds to values). We combine these two components to obtain a model where information can go from long-term memory to short-term memory and vice-versa and we show how standard operations on conceptors allow to combine long-term memories and describe their effect on short-term memory.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2003.11640
رقم الانضمام: edsarx.2003.11640
قاعدة البيانات: arXiv