Global Lorentz gradient estimates for quasilinear equations with measure data for the strongly singular case: $1
التفاصيل البيبلوغرافية
العنوان: Global Lorentz gradient estimates for quasilinear equations with measure data for the strongly singular case: $1
المؤلفون: Le, Cong Nhan, Le, Xuan Truong
سنة النشر: 2020
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Analysis of PDEs, 35J60, 35J61, 35J62
الوصف: In this paper, we study the global regularity estimates in Lorentz spaces for gradients of solutions to quasilinear elliptic equations with measure data of the form \begin{eqnarray*} \left\{ \begin{array}{rcl} -{\rm div}(\mathcal{A}(x, \nabla u))&=& \mu \quad \text{in} ~\Omega, u&=&0 \quad \text{on}~ \partial \Omega, \end{array}\right. \end{eqnarray*} where $\mu$ is a finite signed Radon measure in $\Omega$, $\Omega \subset \mathbb{R}^n$ is a bounded domain such that its complement $\mathbb{R}^n\backslash\Omega$ is uniformly $p$-thick and $\mathcal{A}$ is a Carath\'eodory vector valued function satisfying growth and monotonicity conditions for the strongly singular case $1
نوع الوثيقة: Working Paper
DOI: 10.1142/S021919972050056X
URL الوصول: http://arxiv.org/abs/2003.11237
رقم الانضمام: edsarx.2003.11237
قاعدة البيانات: arXiv

الوصف
DOI:10.1142/S021919972050056X