Report
Global Lorentz gradient estimates for quasilinear equations with measure data for the strongly singular case: $1
العنوان: | Global Lorentz gradient estimates for quasilinear equations with measure data for the strongly singular case: $1
|
---|---|
المؤلفون: | Le, Cong Nhan, Le, Xuan Truong |
سنة النشر: | 2020 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Analysis of PDEs, 35J60, 35J61, 35J62 |
الوصف: | In this paper, we study the global regularity estimates in Lorentz spaces for gradients of solutions to quasilinear elliptic equations with measure data of the form \begin{eqnarray*} \left\{ \begin{array}{rcl} -{\rm div}(\mathcal{A}(x, \nabla u))&=& \mu \quad \text{in} ~\Omega, u&=&0 \quad \text{on}~ \partial \Omega, \end{array}\right. \end{eqnarray*} where $\mu$ is a finite signed Radon measure in $\Omega$, $\Omega \subset \mathbb{R}^n$ is a bounded domain such that its complement $\mathbb{R}^n\backslash\Omega$ is uniformly $p$-thick and $\mathcal{A}$ is a Carath\'eodory vector valued function satisfying growth and monotonicity conditions for the strongly singular case $1
|
نوع الوثيقة: | Working Paper |
DOI: | 10.1142/S021919972050056X |
URL الوصول: | http://arxiv.org/abs/2003.11237 |
رقم الانضمام: | edsarx.2003.11237 |
قاعدة البيانات: | arXiv |
DOI: | 10.1142/S021919972050056X |
---|