Robust Hypergraph Clustering via Convex Relaxation of Truncated MLE

التفاصيل البيبلوغرافية
العنوان: Robust Hypergraph Clustering via Convex Relaxation of Truncated MLE
المؤلفون: Lee, Jeonghwan, Kim, Daesung, Chung, Hye Won
المصدر: Published at IEEE Journal on Selected Areas in Information Theory (JSAIT), Issue 3, 2020
سنة النشر: 2020
المجموعة: Computer Science
Mathematics
Statistics
مصطلحات موضوعية: Statistics - Machine Learning, Computer Science - Information Theory, Computer Science - Machine Learning
الوصف: We study hypergraph clustering in the weighted $d$-uniform hypergraph stochastic block model ($d$\textsf{-WHSBM}), where each edge consisting of $d$ nodes from the same community has higher expected weight than the edges consisting of nodes from different communities. We propose a new hypergraph clustering algorithm, called \textsf{CRTMLE}, and provide its performance guarantee under the $d$\textsf{-WHSBM} for general parameter regimes. We show that the proposed method achieves the order-wise optimal or the best existing results for approximately balanced community sizes. Moreover, our results settle the first recovery guarantees for growing number of clusters of unbalanced sizes. Involving theoretical analysis and empirical results, we demonstrate the robustness of our algorithm against the unbalancedness of community sizes or the presence of outlier nodes.
Comment: 20 pages, 4 figure
نوع الوثيقة: Working Paper
DOI: 10.1109/JSAIT.2020.3037170
URL الوصول: http://arxiv.org/abs/2003.10038
رقم الانضمام: edsarx.2003.10038
قاعدة البيانات: arXiv
الوصف
DOI:10.1109/JSAIT.2020.3037170