A practical and efficient approach for Bayesian quantum state estimation

التفاصيل البيبلوغرافية
العنوان: A practical and efficient approach for Bayesian quantum state estimation
المؤلفون: Lukens, Joseph M., Law, Kody J. H., Jasra, Ajay, Lougovski, Pavel
سنة النشر: 2020
المجموعة: Quantum Physics
مصطلحات موضوعية: Quantum Physics
الوصف: Bayesian inference is a powerful paradigm for quantum state tomography, treating uncertainty in meaningful and informative ways. Yet the numerical challenges associated with sampling from complex probability distributions hampers Bayesian tomography in practical settings. In this Article, we introduce an improved, self-contained approach for Bayesian quantum state estimation. Leveraging advances in machine learning and statistics, our formulation relies on highly efficient preconditioned Crank--Nicolson sampling and a pseudo-likelihood. We theoretically analyze the computational cost, and provide explicit examples of inference for both actual and simulated datasets, illustrating improved performance with respect to existing approaches.
نوع الوثيقة: Working Paper
DOI: 10.1088/1367-2630/ab8efa
URL الوصول: http://arxiv.org/abs/2002.10354
رقم الانضمام: edsarx.2002.10354
قاعدة البيانات: arXiv
الوصف
DOI:10.1088/1367-2630/ab8efa