Autonomous Navigation in Unknown Environments using Sparse Kernel-based Occupancy Mapping

التفاصيل البيبلوغرافية
العنوان: Autonomous Navigation in Unknown Environments using Sparse Kernel-based Occupancy Mapping
المؤلفون: Duong, Thai, Das, Nikhil, Yip, Michael, Atanasov, Nikolay
سنة النشر: 2020
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Robotics, Computer Science - Machine Learning, Electrical Engineering and Systems Science - Systems and Control
الوصف: This paper focuses on real-time occupancy mapping and collision checking onboard an autonomous robot navigating in an unknown environment. We propose a new map representation, in which occupied and free space are separated by the decision boundary of a kernel perceptron classifier. We develop an online training algorithm that maintains a very sparse set of support vectors to represent obstacle boundaries in configuration space. We also derive conditions that allow complete (without sampling) collision-checking for piecewise-linear and piecewise-polynomial robot trajectories. We demonstrate the effectiveness of our mapping and collision checking algorithms for autonomous navigation of an Ackermann-drive robot in unknown environments.
Comment: Accepted to ICRA 2020
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2002.01921
رقم الانضمام: edsarx.2002.01921
قاعدة البيانات: arXiv