On cogrowth function of algebras and its logarithmical gap

التفاصيل البيبلوغرافية
العنوان: On cogrowth function of algebras and its logarithmical gap
المؤلفون: Kanel-Belov, A. J., Melnikov, I. A., Mitrofanov, I. V.
المصدر: Comptes Rendus - S\'erie Mathe\'ematique., 359:3 (2021), 297-303
سنة النشر: 2019
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Rings and Algebras, Mathematics - Combinatorics, 16S15, 37B10
الوصف: Let $A \cong k\langle X \rangle / I$ be an associative algebra. A finite word over alphabet $X$ is $I${\it-reducible} if its image in $A$ is a $k$-linear combination of length-lexicographically lesser words. An {\it obstruction} in a subword-minimal $I$-reducible word. A {\em cogrowth} function is number of obstructions of length $\le n$. We show that the cogrowth function of a finitely presented algebra is either bounded or at least logarithmical. We also show that an uniformly recurrent word has at least logarithmical cogrowth.
Comment: 5 pages
نوع الوثيقة: Working Paper
DOI: 10.5802/crmath.170
URL الوصول: http://arxiv.org/abs/1912.03345
رقم الانضمام: edsarx.1912.03345
قاعدة البيانات: arXiv