Report
On cogrowth function of algebras and its logarithmical gap
العنوان: | On cogrowth function of algebras and its logarithmical gap |
---|---|
المؤلفون: | Kanel-Belov, A. J., Melnikov, I. A., Mitrofanov, I. V. |
المصدر: | Comptes Rendus - S\'erie Mathe\'ematique., 359:3 (2021), 297-303 |
سنة النشر: | 2019 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Rings and Algebras, Mathematics - Combinatorics, 16S15, 37B10 |
الوصف: | Let $A \cong k\langle X \rangle / I$ be an associative algebra. A finite word over alphabet $X$ is $I${\it-reducible} if its image in $A$ is a $k$-linear combination of length-lexicographically lesser words. An {\it obstruction} in a subword-minimal $I$-reducible word. A {\em cogrowth} function is number of obstructions of length $\le n$. We show that the cogrowth function of a finitely presented algebra is either bounded or at least logarithmical. We also show that an uniformly recurrent word has at least logarithmical cogrowth. Comment: 5 pages |
نوع الوثيقة: | Working Paper |
DOI: | 10.5802/crmath.170 |
URL الوصول: | http://arxiv.org/abs/1912.03345 |
رقم الانضمام: | edsarx.1912.03345 |
قاعدة البيانات: | arXiv |
DOI: | 10.5802/crmath.170 |
---|