Homogenization with fractional random fields

التفاصيل البيبلوغرافية
العنوان: Homogenization with fractional random fields
المؤلفون: Gehringer, Johann, Li, Xue-Mei
سنة النشر: 2019
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Probability
الوصف: We consider a system of differential equations in a fast long range dependent random environment and prove a homogenization theorem involving multiple scaling constants. The effective dynamics solves a rough differential equation, which is `equivalent' to a stochastic equation driven by mixed It\^o integrals and Young integrals with respect to Wiener processes and Hermite processes. Lacking other tools we use the rough path theory for proving the convergence, our main technical endeavour is on obtaining an enhanced scaling limit theorem for path integrals (Functional CLT and non-CLT's) in a strong topology, the rough path topology, which is given by a H\"older distance for stochastic processes and their lifts. In dimension one we also include the negatively correlated case, for the second order / kinetic fractional BM model we also bound the error.
Comment: 70 pages
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1911.12600
رقم الانضمام: edsarx.1911.12600
قاعدة البيانات: arXiv