Report
A spectral theory for transverse tensor operators
العنوان: | A spectral theory for transverse tensor operators |
---|---|
المؤلفون: | First, Uriya, Maglione, Joshua, Wilson, James B. |
سنة النشر: | 2019 |
المجموعة: | Mathematics |
مصطلحات موضوعية: | Mathematics - Spectral Theory, Mathematics - Algebraic Geometry, Mathematics - Group Theory, Mathematics - Rings and Algebras, 15A69, 46B28, 47A80, 16W22 |
الوصف: | Tensors are multiway arrays of data, and transverse operators are the operators that change the frame of reference. We develop the spectral theory of transverse tensor operators and apply it to problems closely related to classifying quantum states of matter, isomorphism in algebra, clustering in data, and the design of high performance tensor type-systems. We prove the existence and uniqueness of the optimally-compressed tensor product spaces over algebras, called \emph{densors}. This gives structural insights for tensors and improves how we recognize tensors in arbitrary reference frames. Using work of Eisenbud--Sturmfels on binomial ideals, we classify the maximal groups and categories of transverse operators, leading us to general tensor data types and categorical tensor decompositions, amenable to theorems like Jordan--H\"older and Krull--Schmidt. All categorical tensor substructure is detected by transverse operators whose spectra contain a Stanley--Reisner ideal, which can be analyzed with combinatorial and geometrical tools via their simplicial complexes. Underpinning this is a ternary Galois correspondence between tensor spaces, multivariable polynomial ideals, and transverse operators. This correspondence can be computed in polynomial time. We give an implementation in the computer algebra system \textsf{Magma}. Comment: 45 pages, 6 figures |
نوع الوثيقة: | Working Paper |
URL الوصول: | http://arxiv.org/abs/1911.02518 |
رقم الانضمام: | edsarx.1911.02518 |
قاعدة البيانات: | arXiv |
الوصف غير متاح. |