A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I

التفاصيل البيبلوغرافية
العنوان: A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I
المؤلفون: Comi, Giovanni E., Stefani, G.
المصدر: Rev. Mat. Complut. 36, 491-569 (2023)
سنة النشر: 2019
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - Functional Analysis, 26A33, 26B30, 28A33
الوصف: We continue the study of the space $BV^\alpha(\mathbb{R}^n)$ of functions with bounded fractional variation in $\mathbb{R}^n$ of order $\alpha\in(0,1)$ introduced in arXiv:1809.08575, by dealing with the asymptotic behaviour of the fractional operators involved. After some technical improvements of certain results of our previous work, we prove that the fractional $\alpha$-variation converges to the standard De Giorgi's variation both pointwise and in the $\Gamma$-limit sense as $\alpha\to1^-$. We also prove that the fractional $\beta$-variation converges to the fractional $\alpha$-variation both pointwise and in the $\Gamma$-limit sense as $\beta\to\alpha^-$ for any given $\alpha\in(0,1)$.
Comment: 61 pages
نوع الوثيقة: Working Paper
DOI: 10.1007/s13163-022-00429-y
URL الوصول: http://arxiv.org/abs/1910.13419
رقم الانضمام: edsarx.1910.13419
قاعدة البيانات: arXiv
الوصف
DOI:10.1007/s13163-022-00429-y