Voronoi complexes in higher dimensions, cohomology of $GL_N(Z)$ for $N\geq 8$ and the triviality of $K_8(Z)$

التفاصيل البيبلوغرافية
العنوان: Voronoi complexes in higher dimensions, cohomology of $GL_N(Z)$ for $N\geq 8$ and the triviality of $K_8(Z)$
المؤلفون: Sikirić, Mathieu Dutour, Elbaz-Vincent, Philippe, Kupers, Alexander, Martinet, Jacques
سنة النشر: 2019
المجموعة: Mathematics
مصطلحات موضوعية: Mathematics - K-Theory and Homology, Mathematics - Number Theory, 11H55, 11F75, 11F06, 11Y99, 55N91, 19D50, 20J06
الوصف: We enumerate the low dimensional cells in the Voronoi cell complexes attached to the modular groups $SL_N(Z)$ and $GL_N(Z)$ for $N=8,9,10,11$, using quotient sublattices techniques for $N=8,9$ and linear programming methods for higher dimensions. These enumerations allow us to compute some cohomology of these groups and prove that $K_8(Z) = 0$. We deduce from it new knowledge on the Kummer-Vandiver conjecture.
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/1910.11598
رقم الانضمام: edsarx.1910.11598
قاعدة البيانات: arXiv