التفاصيل البيبلوغرافية
العنوان: |
Voronoi complexes in higher dimensions, cohomology of $GL_N(Z)$ for $N\geq 8$ and the triviality of $K_8(Z)$ |
المؤلفون: |
Sikirić, Mathieu Dutour, Elbaz-Vincent, Philippe, Kupers, Alexander, Martinet, Jacques |
سنة النشر: |
2019 |
المجموعة: |
Mathematics |
مصطلحات موضوعية: |
Mathematics - K-Theory and Homology, Mathematics - Number Theory, 11H55, 11F75, 11F06, 11Y99, 55N91, 19D50, 20J06 |
الوصف: |
We enumerate the low dimensional cells in the Voronoi cell complexes attached to the modular groups $SL_N(Z)$ and $GL_N(Z)$ for $N=8,9,10,11$, using quotient sublattices techniques for $N=8,9$ and linear programming methods for higher dimensions. These enumerations allow us to compute some cohomology of these groups and prove that $K_8(Z) = 0$. We deduce from it new knowledge on the Kummer-Vandiver conjecture. |
نوع الوثيقة: |
Working Paper |
URL الوصول: |
http://arxiv.org/abs/1910.11598 |
رقم الانضمام: |
edsarx.1910.11598 |
قاعدة البيانات: |
arXiv |