Report
Testing Macdonald Index as a Refined Character of Chiral Algebra
العنوان: | Testing Macdonald Index as a Refined Character of Chiral Algebra |
---|---|
المؤلفون: | Watanabe, Akimi, Zhu, Rui-Dong |
المصدر: | JHEP02(2020)004 |
سنة النشر: | 2019 |
المجموعة: | Mathematics High Energy Physics - Theory Mathematical Physics |
مصطلحات موضوعية: | High Energy Physics - Theory, Mathematical Physics |
الوصف: | We test in $(A_{n-1},A_{m-1})$ Argyres-Douglas theories with $\mathrm{gcd}(n,m)=1$ the proposal of Song's in arXiv:1612.08956 that the Macdonald index gives a refined character of the dual chiral algebra. In particular, we extend the analysis to higher rank theories and Macdonald indices with surface operator, via the TQFT picture and Gaiotto-Rastelli-Razamat's Higgsing method. We establish the prescription for refined characters in higher rank minimal models from the dual $(A_{n-1},A_{m-1})$ theories in the large $m$ limit, and then provide evidence for Song's proposal to hold (at least) in some simple modules (including the vacuum module) at finite $m$. We also discuss some observed mismatch in our approach. Comment: 38+16 pages; minor modification + typo corrected in v3 |
نوع الوثيقة: | Working Paper |
DOI: | 10.1007/JHEP02(2020)004 |
URL الوصول: | http://arxiv.org/abs/1909.04074 |
رقم الانضمام: | edsarx.1909.04074 |
قاعدة البيانات: | arXiv |
DOI: | 10.1007/JHEP02(2020)004 |
---|