Testing Macdonald Index as a Refined Character of Chiral Algebra

التفاصيل البيبلوغرافية
العنوان: Testing Macdonald Index as a Refined Character of Chiral Algebra
المؤلفون: Watanabe, Akimi, Zhu, Rui-Dong
المصدر: JHEP02(2020)004
سنة النشر: 2019
المجموعة: Mathematics
High Energy Physics - Theory
Mathematical Physics
مصطلحات موضوعية: High Energy Physics - Theory, Mathematical Physics
الوصف: We test in $(A_{n-1},A_{m-1})$ Argyres-Douglas theories with $\mathrm{gcd}(n,m)=1$ the proposal of Song's in arXiv:1612.08956 that the Macdonald index gives a refined character of the dual chiral algebra. In particular, we extend the analysis to higher rank theories and Macdonald indices with surface operator, via the TQFT picture and Gaiotto-Rastelli-Razamat's Higgsing method. We establish the prescription for refined characters in higher rank minimal models from the dual $(A_{n-1},A_{m-1})$ theories in the large $m$ limit, and then provide evidence for Song's proposal to hold (at least) in some simple modules (including the vacuum module) at finite $m$. We also discuss some observed mismatch in our approach.
Comment: 38+16 pages; minor modification + typo corrected in v3
نوع الوثيقة: Working Paper
DOI: 10.1007/JHEP02(2020)004
URL الوصول: http://arxiv.org/abs/1909.04074
رقم الانضمام: edsarx.1909.04074
قاعدة البيانات: arXiv