Machine-learning based three-qubit gate for realization of a Toffoli gate with cQED-based transmon systems

التفاصيل البيبلوغرافية
العنوان: Machine-learning based three-qubit gate for realization of a Toffoli gate with cQED-based transmon systems
المؤلفون: Daraeizadeh, Sahar, Premaratne, Shavindra P., Song, Xiaoyu, Perkowski, Marek, Matsuura, Anne Y.
المصدر: Phys. Rev. A 102, 012601 (2020)
سنة النشر: 2019
المجموعة: Computer Science
Quantum Physics
مصطلحات موضوعية: Quantum Physics, Computer Science - Machine Learning
الوصف: We use machine learning techniques to design a 50 ns three-qubit flux-tunable controlled-controlled-phase gate with fidelity of >99.99% for nearest-neighbor coupled transmons in circuit quantum electrodynamics architectures. We explain our gate design procedure where we enforce realistic constraints, and analyze the new gate's robustness under decoherence, distortion, and random noise. Our controlled-controlled-phase gate in combination with two single-qubit gates realizes a Toffoli gate which is widely used in quantum circuits, logic synthesis, quantum error correction, and quantum games.
نوع الوثيقة: Working Paper
DOI: 10.1103/PhysRevA.102.012601
URL الوصول: http://arxiv.org/abs/1908.01092
رقم الانضمام: edsarx.1908.01092
قاعدة البيانات: arXiv
الوصف
DOI:10.1103/PhysRevA.102.012601